Tuesday, November 5, 2019
Nutrient Absorption in the Digestive System
Nutrient Absorption in the Digestive System Digested molecules of food, as well as water and minerals from the diet, are absorbed from the cavity of the upper small intestine. The absorbed materials cross the mucosa into the blood, mainly, and are carried off in the bloodstream to other parts of the body for storage or further chemical change. This part of the digestive system process varies with different types of nutrients. Nutrient Absorption in the Digestive System Carbohydrates An average American adult eats about half a pound of carbohydrate each day. Some of our most common foods contain mostly carbohydrates. Examples are bread, potatoes, pastries, candy, rice, spaghetti, fruits, and vegetables. Many of these foods contain both starch, which can be digested and fiber, which the body cannot digest. The digestible carbohydrates are broken into simpler molecules by enzymes in the saliva, in juice produced by the pancreas, and in the lining of the small intestine. Starch is digested in two steps: First, an enzyme in the saliva and pancreatic juice breaks the starch into molecules called maltose; then an enzyme in the lining of the small intestine (maltase) splits the maltose into glucose molecules that can be absorbed into the blood. Glucose is carried through the bloodstream to the liver, where it is stored or used to provide energy for the work of the body. Table sugar is another carbohydrate that must be digested to be useful. An enzyme in the lining of the small intestine digests table sugar into glucose and fructose, each of which can be absorbed from the intestinal cavity into the blood. Milk contains yet another type of sugar, lactose, which is changed into absorbable molecules by an enzyme called lactase, also found in the intestinal lining. Protein Foods such as meat, eggs, and beans consist of giant molecules of protein that must be digested by enzymes before they can be used to build and repair body tissues. An enzyme in the juice of the stomach starts the digestion of swallowed protein. Further digestion of the protein is completed in the small intestine. Here, several enzymes from the pancreatic juice and the lining of the intestine carry out the breakdown of huge protein molecules into small molecules called amino acid. These small molecules can be absorbed from the hollow of the small intestine into the blood and then be carried to all parts of the body to build the walls and other parts of cells. Fats Fat molecules are a rich source of energy for the body. The first step in digestion of a fat such as butter is to dissolve it into the water content of the intestinal cavity. The bile acids produced by the liver act as natural detergents to dissolve fat in water and allow the enzymes to break the large fat molecules into smaller molecules, some of which are fatty acids and cholesterol. The bile acids combine with the fatty acids and cholesterol and help these molecules to move into the cells of the mucosa. In these cells, the small molecules are formed back into large molecules, most of which pass into vessels (called lymphatics) near the intestine. These small vessels carry the reformed fat to the veins of the chest, and the blood carries the fat to storage depots in different parts of the body. Vitamins The large, hollow organs of the digestive system contain muscle that enables their walls to move. The movement of organ walls can propel food and liquid and also can mix the contents within each organ. Typical movement of the esophagus, stomach, and intestine is called peristalsis. The action of peristalsis looks like an ocean wave moving through the muscle. The muscle of the organ produces a narrowing and then propels the narrowed portion slowly down the length of the organ. These waves of narrowing push the food and fluid in front of them through each hollow organ. Water and Salt Most of the material absorbed from the cavity of the small intestine is water in which salt is dissolved. The salt and water come from the food and liquid we swallow and the juices secreted by the many digestive glands. In a healthy adult, more than a gallon of water containing over an ounce of salt is absorbed from the intestine every 24 hours. Digestion Control A fascinating feature of theà digestive systemà is that it contains its own regulators. Hormone Regulators The major hormones that control the functions of the digestive system are produced and released by cells in the mucosa of the stomach and small intestine. These hormones are released into theà bloodà of the digestive tract, travel back to theà heartà and through theà arteries, and return to the digestive system, where they stimulate digestive juices and cause organ movement. The hormones that control digestion are gastrin, secretin, and cholecystokinin (CCK): Gastrin causes the stomach to produce an acid for dissolving andà digesting some foods. It is also necessary for the normal growth of the lining of the stomach, small intestine, and colon.Secretin causes theà pancreasà to send out aà digestive juiceà that is rich in bicarbonate. It stimulates the stomach to produce pepsin, an enzyme that digests protein, and it also stimulates the liver to produce bile.CCK causes the pancreas to grow and to produce the enzymes of pancreatic juice, and it causes the gallbladder to empty. Nerve Regulators Two types ofà nervesà help to control the action of the digestive system. Extrinsic (outside) nerves come to the digestive organs from the unconscious part of theà brainà or from theà spinal cord. They release a chemical called acetylcholine and another called adrenaline. Acetylcholine causes the muscle of the digestive organs to squeeze with more force and increase the push of food and juice through the digestive tract. Acetylcholine also causes the stomach and pancreas to produce more digestive juice. Adrenaline relaxes the muscle of the stomach and intestine and decreases the flow of blood to theseà organs. Even more important, though, are the intrinsic (inside) nerves, which make up a very dense network embedded in the walls of the esophagus, stomach, small intestine, and colon. The intrinsic nerves are triggered to act when the walls of the hollow organs are stretched by food. They release many different substances that speed up or delay the movement of food and the production of juices by the digestive organs. Sources Your Digestive System and How It Works. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Updated Sept. 2013. Web. https://www.niddk.nih.gov/health-information/health-topics/Anatomy/your-digestive-system/Pages/anatomy.aspx.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.